Химические свойства кислых солей

1. Разложение кислых солей

Все кислые соли при нагревании разлагаются, приведем несколько примеров из тренировочных вариантов:

$$2NaHCO_3 \rightarrow Na_2CO_3 + CO_2\uparrow + H_2O$$

 $NH_4HCO_3 \rightarrow NH_3\uparrow + CO_2\uparrow + H_2O$
 $(NH_4)_2HPO_4 \rightarrow 2NH_3\uparrow + H_3PO_4$.

Гидрокарбонаты других металлов также разлагаются с выделением углекислого газа и карбоната металла и только гидрокарбонат аммония разлагается без твердого остатка.

2. Кислые соли + металлы

Кислые соли реагируют с металлами, стоящими в ряду активности металлов левее атома водорода:

$$2NaHSO_4 + Zn \rightarrow Na_2SO_4 + ZnSO_4 + H_2 \uparrow$$

 $2NaHSO_4 + Fe \rightarrow Na_2SO_4 + FeSO_4 + H_2 \uparrow$

В данных реакциях окислителем является катион H^+ , а восстановителями атомы цинка и железа. Катион H^+ может окислить железо только до степени окисления ± 2 . Так как эти реакции проводят в растворе, то берут металл, который не взаимодействует с водой при обычных условиях.

3. Кислые соли + кислоты

Кислые соли реагируют с кислотами с образованием средних солей, если выделяется газ или образуется осадок:

$$\begin{split} & \text{Ca}(\text{HCO}_3)_2 + 2\text{HBr} \rightarrow \text{CaBr}_2 + 2\text{CO}_2\uparrow + 2\text{H}_2\text{O} \\ & \text{NHCO}_3 + \text{HCl} \rightarrow \text{NaCl} + \text{CO}_2\uparrow + \text{H}_2\text{O} \\ & \text{Mg}(\text{HCO}_3)_2 + \text{H}_2\text{SO}_4 \rightarrow \text{MgSO}_4 + 2\text{CO}_2\uparrow + 2\text{H}_2\text{O} \\ & \text{KHCO}_3 + \text{HClO}_4 \rightarrow \text{KClO}_4 + \text{CO}_2\uparrow + \text{H}_2\text{O} \\ & \text{KHCO}_3 + \text{HI} \rightarrow \text{KI} + \text{CO}_2\uparrow + \text{H}_2\text{O}. \end{split}$$

4. Кислые соли + шелочи

1) Если катионы соли и щелочи одинаковые, то образуется средняя соль:

$$Ca(HPO_4)_2 + 2Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 \downarrow + 4H_2O$$

 $NaHCO_3 + NaOH \rightarrow Na_2CO_3 + H_2O$

Если в кислой соли 2 водорода, то возможно сначала получить кислую соль с меньшим числом атомов водорода, и затем среднюю соль:

$$NaH_2PO_4 + NaOH \rightarrow Na_2HPO_4 + H_2O$$

 $Na_2HPO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$

Или сразу:

$$NaH_2PO_4 + 2NaOH \rightarrow Na_3PO_4 + 2H_2O$$

Если катионы разные, но оба являются щелочными металлами, также образуются средние соли:

$$2NaHCO_3 + 2KOH \rightarrow K_2CO_3 + Na_2CO_3 + 2H_2O$$
.

2) Если катионы соли и щелочи разные, кислая соль образована щелочным металлом, а щелочь - щелочноземельным, то в реакции может образовываться как щелочь этого металла (из кислой соли), так и средняя соль:

$$2NaH_2PO_4 + 3Sr(OH)_{2(изб)} \rightarrow Sr_3(PO_4)_2\downarrow + 2NaOH + 4H_2O$$
 или $3NaH_2PO_{4(изб)} + 3Sr(OH)_2 \rightarrow Sr_3(PO_4)_2\downarrow + Na_3PO_4 + 6H_2O$

Первую реакцию можно запомнить, если представить обменную реакцию со средней солью. Во второй реакции образовавшаяся щелочь реагирует с исходной кислой солью, так как она (соль) взята в избытке:

$$2NaOH + NaH_2PO_4 \rightarrow Na_3PO_4 + 2H_2O$$
.

Другие примеры:

$$KHCO_3 + Ba(OH)_{2(H36)} \rightarrow BaCO_3 \downarrow + KOH + H_2O$$
 или $2KHCO_{3(H36)} + Ba(OH)_2 \rightarrow BaCO_3 \downarrow + K_2CO_3 + 2H_2O$

$$2NaH_2PO_4 + 3Ba(OH)_{2(и36)} \rightarrow Ba_3(PO_4)_2\downarrow + 2NaOH + 4H_2O$$
 или $3NaH_2PO_{4(и36)} + 3Ba(OH)_2 \rightarrow Ba_3(PO_4)_2\downarrow + Na_3PO_4 + 6H_2O$ или $3NaH_2PO_4 + 2Ba(OH)_2 \rightarrow 2BaHPO_4\downarrow Na_3PO_4 + 4H_2O$.

3) Если катионы соли и щелочи разные, и кислая соль содержит Mg^{2+} (а щелочь — щелочной металл), возможно образование двух разных осадков:

$$Mg(H_2PO_4)_2 + 6KOH \rightarrow Mg(OH)_2 \downarrow + 2K_3PO_4 + 4H_2O$$
 или $3Mg(H_2PO_4)_2 + 12KOH \rightarrow Mg_3(PO_4)_2 \downarrow + 4K_3PO_4 + 12H_2O$.

Первую реакцию можно запомнить, если представить обменную реакцию со средней солью. Во второй реакции щелочи было взято меньше и весь магний выпал в осадок с фосфатом.

4) Если катионы соли и щелочи разные, кислая соль содержит ионы Ca^{2+} или Sr^{2+} , а щелочь — щелочной металл, то возможен только один набор продуктов (две средние соли):

$$3Sr(H_2PO_4)_2 + 12KOH \rightarrow Sr_3(PO_4)_2\downarrow + 4K_3PO_4 + 12H_2O$$

 $3CaHPO_4 + 3NaOH \rightarrow Ca_3(PO_4)_2\downarrow + Na_3PO_4 + 3H_2O$
 $3Ca(H_2PO_4)_2 + 12NaOH \rightarrow Ca_3(PO_4)_2\downarrow + 4Na_3PO_4 + 12H_2O$.

В данном случае обычные обменные реакции не протекают, так как сразу образуется осадок фосфата. Осадки $Sr(OH)_2$ и $Ca(OH)_2$ не являются достаточно прочными, чтобы реакция пошла по этому пути (М в таблице растворимости).

5) Соли аммония реагируют с выделением аммиака:

$$2(NH_4)_2HPO_4 + 3Ca(OH)_2 \rightarrow Ca_3(PO_4)_2\downarrow + 4NH_3\uparrow + 6H_2O.$$

Также возможно образование нерастворимого CaHPO₄: $(NH_4)_2HPO_4 + Ca(OH)_2 \rightarrow CaHPO_4 \downarrow + 2NH_3 \uparrow + 2H_2O$.

5. Кислые соли сильных кислот + другие соли

Как правило, в таких реакциях катион водорода из кислой соли переходит в раствор, образуя кислоту. Рассмотрим несколько примеров реакций из тренировочных вариантов:

1) KHSO₄ + (CH₃COO)₂Ba
$$\rightarrow$$
 BaSO₄\\ + CH₃COOK + CH₃COOH
K⁺ + HSO₄⁻ + 2CH₃COO⁻ + Ba²⁺ \rightarrow BaSO₄\\ + CH₃COO⁻ + K⁺ + CH₃COOH
HSO₄⁻ + CH₃COO⁻ + Ba²⁺ \rightarrow BaSO₄\\ + CH₃COOH.

Серная кислота является сильной, поэтому в растворе также имеются ионы SO_4^{2-} . Это позволяет записать ионные уравнения по-другому:

$$K^{+} + H^{+} + SO_{4}^{2-} + 2CH_{3}COO^{-} + Ba^{2+} \rightarrow BaSO_{4} \downarrow + K^{+} + CH_{3}COO^{-} + CH_{3}COOH$$

 $H^{+} + SO_{4}^{2-} + CH_{3}COO^{-} + Ba^{2+} \rightarrow BaSO_{4} \downarrow + CH_{3}COOH$.

2) KHSO₄ + BaCl₂
$$\rightarrow$$
 BaSO₄\[\psi + KCl + HCl \]
K⁺ + HSO₄⁻ + Ba²⁺ + 2Cl⁻ \rightarrow BaSO₄\[\psi + K⁺ + 2Cl⁻ + H⁺
HSO₄⁻ + Ba²⁺ \rightarrow BaSO₄\[\psi + H⁺.

Также можно записывать ионные уравнения с сульфат-ионами: $K^+ + H^+ + SO_4^{2^-} + Ba^{2^+} + 2Cl^- \rightarrow BaSO_4 \downarrow + K^+ + 2Cl^- + H^+ SO_4^{2^-} + Ba^{2^+} \rightarrow BaSO_4 \downarrow$.

6. Кислые соли <u>слабых</u> кислот + другие соли

1) Обычные обменные реакции:

растворе ничего не происходит.

$$AgH_2PO_4 + NH_4Br \rightarrow AgBr\downarrow + NH_4H_2PO_4$$

 $Ba(HCO_3)_2 + K_2SO_4 \rightarrow BaSO_4\downarrow + 2KHCO_3$
 $Ca(HCO_3)_2 + K_2SiO_3 \rightarrow CaSiO_3\downarrow + 2KHCO_3$

Полное и сокращенное ионные уравнения для последней реакции:

$$Ca^{2+} + 2HCO_3 + 2K^+ + SiO_3^{2-} \rightarrow CaSiO_3 \downarrow + 2K^+ + 2HCO_3$$

 $Ca^{2+} + SiO_3^{2-} \rightarrow CaSiO_3 \downarrow$

В растворе присутствуют ионы НСО₃, поэтому в продуктах пишем кислую соль. С ними в

2) Обменные реакции, остаток кислой соли переходит в осадок:

$$Na_2HPO_4 + SrCl_2 \rightarrow SrHPO_4 \downarrow + 2NaCl$$

 $Na_2HPO_4 + CaCl_2 \rightarrow CaHPO_4 \downarrow + 2NaCl$
 $(NH_4)_2HPO_4 + CaBr_2 \rightarrow CaHPO_4 \downarrow + 2NH_4Br$.

Полное и сокращенное ионные уравнения для последней реакции:

$$2NH_4^+ + HPO_4^{2-} + Ca^{2+} + 2Br^- \rightarrow CaHPO_4 \downarrow + 2NH_4^+ + 2Br^-$$

 $HPO_4^{2-} + Ca^{2+} \rightarrow CaHPO_4 \downarrow$.

В растворе остаются только ионы NH_4^+ и Br^- .

3) Реакции с образованием осадка средней соли и кислоты:

$$2Na_2HPO_4 + 3AgNO_3 \rightarrow Ag_3PO_4 \downarrow + 3NaNO_3 + NaH_2PO_4$$
 (ЕГЭучебник 2025, вар 2) $2KHCO_3 + 2AgNO_3 \rightarrow Ag_2CO_3 \downarrow + 2KNO_3 + CO_2 \uparrow + H_2O$ (ЕГЭучебник 2025, вар 3)

$$KHS + Cu(NO_3)_2 \rightarrow CuS \downarrow + KNO_3 + HNO_3$$

Полное и сокращенное ионные уравнения для последней реакции:

$$K^{+} + HS^{-} + Cu^{2+} + 2NO_{3}^{-} \rightarrow CuS \downarrow + K^{+} + NO_{3}^{-} + H^{+} + NO_{3}^{-}$$

 $HS^{-} + Cu^{2+} \rightarrow CuS \downarrow + H^{+}$.

Образуется осадок CuS, даже несмотря на то, что сульфид-ион в растворе отсутствует. Имеющийся ион водорода переходит в раствор, образуя кислоту.

Подобные реакции протекают, только если в осадок выпадает соль таких металлов, как Ag, Cu или Hg.

Примеры реакций из тестовой части, которые не протекают:

 $NaH_2PO_4 + (CH_3COO)_2Ba \rightarrow peakция не идёт, осадок <math>Ba_3(PO_4)_2$ не образуется, так как в растворе нет ионов PO_4^{3-} .

 $Ca(HCO_3)_2 + MgI_2 \rightarrow$ реакция не идет, осадок $MgCO_3$ не образуется, так как в растворе нет ионов CO_3^{2-} . Если и предположить, что выпадает осадок $MgCO_3$, то он будет растворятся образующимся в растворе углекислым газом.

 $NaHCO_3 + Na_2SiO_3 \rightarrow$ реакция не идёт, осадка не образуется.

4) Двойной гидролиз: если в реакцию вступает соль сильного основания и слабой летучей кислоты и соль Fe^{+3} , Cr^{+3} , Al^{+3} и сильной кислоты. В таких реакциях выпадает осадок гидроксида и выделяется газ:

$$3$$
NaHCO₃ + AlCl₃ \rightarrow Al(OH)₃ \downarrow + 3 NaCl + 3 CO₂ \uparrow
 3 KHCO₃ + Fe(NO₃)₃ \rightarrow Fe(OH)₃ \downarrow + 3 KNO₃ + 3 CO₂ \uparrow

Полное и сокращенное ионные уравнения для последней реакции: $3K^+ + 3HCO_3 + Fe^{3+} + 3NO_3 \rightarrow Fe(OH)_3 \downarrow + 3K^+ + 3NO_3 + 3CO_2 \uparrow$ $3HCO_3 + Fe^{3+} \rightarrow Fe(OH)_3 \downarrow + 3CO_2 \uparrow$.

7. Окислительно-восстановительные реакции

В тренировочных вариантах ОВР с кислыми солями встречаются редко. Пока есть только одна реакция:

1) Окисление КНSО3 (гидросульфита калия) бромной водой:

$$KHSO_3 + Br_2 + H_2O \rightarrow 2HBr + KHSO_4$$
.

Помним, что бром является более сильным окислителем, чем сера. Он окислит гидросульфит-ион до сульфат-иона, т.е. S^{+4} до S^{+6} . Сам бром восстанавливается до бромид-иона Br^- .

Серная кислота является сильной, поэтому в растворе практически полностью диссоциирует на ионы H^+ и $SO4^{2-}$ (с небольшим содержанием ионов HSO_4). HBr - также сильная кислота. Следовательно, в растворе присутствуют ионы: H^+ , Br^- , K^+ и SO_4^{2-} (окруженные молекулами воды):

$$K^{+} + HSO_{3}^{-} + Br_{2} + H_{2}O \rightarrow 3H^{+} + 2Br + K^{+} + SO_{4}^{2-}$$

Также возможна другая запись реакции: $KHSO_3 + Br_2 + H_2O \rightarrow KBr + HBr + H_2SO_4$.

Эта запись показывает тот же самый состав ионов в растворе, поэтому и является возможной.

Вопросы о содержимом этого документа можно задавать в группе VK: https://vk.com/chemrise.

Составитель: к.х.н. О.В. Макарова

Сайт: https://chemrise.ru